Structural Evidence for the Dopamine-First Mechanism of Norcoclaurine Synthase
نویسندگان
چکیده
Norcoclaurine synthase (NCS) is a Pictet-Spenglerase that catalyzes the first key step in plant benzylisoquinoline alkaloid metabolism, a compound family that includes bioactive natural products such as morphine. The enzyme has also shown great potential as a biocatalyst for the formation of chiral isoquinolines. Here we present new high-resolution X-ray crystallography data describing Thalictrum flavum NCS bound to a mechanism-inspired ligand. The structure supports two key features of the NCS "dopamine-first" mechanism: the binding of dopamine catechol to Lys-122 and the position of the carbonyl substrate binding site at the active site entrance. The catalytically vital residue Glu-110 occupies a previously unobserved ligand-bound conformation that may be catalytically significant. The potential roles of inhibitory binding and alternative amino acid conformations in the mechanism have also been revealed. This work significantly advances our understanding of the NCS mechanism and will aid future efforts to engineer the substrate scope and catalytic properties of this useful biocatalyst.
منابع مشابه
‘Dopamine-first’ mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile
Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet-Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroi...
متن کاملConformation, catalytic site, and enzymatic mechanism of the PR10 allergen-related enzyme norcoclaurine synthase.
The enzyme NCS [(S)-norcoclaurine synthase; EC 4.2.1.78] found in the common meadow rue, Thalictrum flavum, and other plant species, is involved in the biosynthesis of BIAs (benzylisoquinoline alkaloids). This group of plant secondary metabolites comprises pharmacologically-active compounds such as morphine and codeine. NCS catalyses the condensation of 4-HPAA (4-hydroxyphenylacetaldehyde) and ...
متن کاملNorcoclaurine synthase: mechanism of an enantioselective pictet-spengler catalyzing enzyme.
The use of bifunctional catalysts in organic synthesis finds inspiration in the selectivity of enzymatic catalysis which arises from the specific interactions between basic and acidic amino acid residues and the substrate itself in order to stabilize developing charges in the transition state. Many enzymes act as bifunctional catalysts using amino acid residues at the active site as Lewis acids...
متن کاملGenes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae
Norcoclaurine synthase (NCS) catalyzes the enantioselective Pictet-Spengler condensation of dopamine and 4-hydroxyphenylacetaldehyde as the first step in benzylisoquinoline alkaloid (BIA) biosynthesis. NCS orthologs in available transcriptome databases were screened for variants that might improve the low yield of BIAs in engineered microorganisms. Databases for 21 BIA-producing species from fo...
متن کاملFunctional analysis of norcoclaurine synthase in Coptis japonica.
(S)-Norcoclaurine is the entry compound in benzylisoquinoline alkaloid biosynthesis and is produced by the condensation of dopamine and 4-hydroxyphenylacetaldehyde (4-HPAA) by norcoclaurine synthase (NCS) (EC 4.2.1.78). Although cDNA of the pathogenesis-related (PR) 10 family, the translation product of which catalyzes NCS reaction, has been isolated from Thalictrum flavum, its detailed enzymol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 56 شماره
صفحات -
تاریخ انتشار 2017